
www.manaraa.com

Lifestreams: A Storage Model for Personal DataEric Freeman and David GelernterDepartment of Computer ScienceYale UniversityNew Haven, CT 06520Abstract|Conventional software systems, such as those based on the \desk-top metaphor," are ill-equipped to manage the electronic informa-tion and events of the typical computer user. We introduce a newmetaphor, Lifestreams, for dynamically organizing a user's personalworkspace. Lifestreams uses a simple organizational metaphor, atime-ordered stream of documents, as an underlying storage system.Stream �lters are used to organize, monitor and summarize infor-mation for the user. Combined, they provide a system that sub-sumes many separate desktop applications. This paper describes theLifestreams model and our prototype system.I. IntroductionINEXPERIENCED users are right to be confused by to-day's operating systems; they aren't well suited to mostusers needs and they require too many separate applica-tions, too many �le and format translations, the inventionof too many pointless names and the construction of or-ganizational hierarchies that too quickly become obsolete.They are built on ideas like named �les (an invention ofthe 50s) in hierarchical directories (60s) that were brilliantwhen they were new but have long since become obsolete.Consider, for example, the \desktop metaphor," which at-tempts to simplify common �le operations by presentingthem in the familiar language of the paper-based world (pa-per documents as �les, folders as directories, the trashcanfor deletion). Although this metaphor has been successfulto a point (one usually has to explain to a new user howthe computer desktop is like a real desktop), its use hassome unfortunate consequences: the paper-based model isa rather poor basis for organizing information1 and con-strains our choices in creating new information systems[15].We've developed \Lifestreams" in an attempt to do bet-ter. Lifestreams, �rst proposed in [9] and described in[8], is a new model and system for managing personalelectronic information. Lifestreams uses a time-orderedstream as a storage model and stream �lters to organize,locate, summarize and monitor incoming information. To-gether, streams and �lters provide a uni�ed framework thatsubsumes many separate desktop applications to accom-plish and handle personal communication, scheduling, andsearch and retrieval tasks. The prototype that exists todayrealizes many of the system's de�ning features and has al-lowed us to experiment with the model's key ideas. We'vedeveloped our system as a machine-independent, client-server architecture that is open so users can continue toThis work was partially supported by ASSERT grant F49620-92-J-0240.1Where the state of the art is still a messy desktop.

use the document types, viewers and editors they are ac-customed to. In this article we describe the model, ourcurrent implementation, its use in context, and the direc-tion our system is headed.II. The IdeaLifestreams is based on the following observations:1. Storage should be transparent. \Naming" a �le as itis created and choosing a location for it is unneededoverhead. Names should be required only when usersfeel like inventing them and storage should be handledautomatically by the system. When you grab a pieceof paper and start writing, no-one demands that youbestow a name on the sheet or �nd it a storage loca-tion. Online, many �lenames are not only pointlessbut useless for retrieval purposes. Storage locationsare e�ective only as long as the user remembers them.2. Directories are inadequate as an organizing device.Software is too faithful to the paper-based world; pa-per can't be in more than one place, but electronic doc-uments can (or can appear to be). Conventional sys-tems force users to store new information in �xed cat-egories (namely, directories). But information shouldbe organized as needed, not once and for all when itis created. Directories should be created on demandand documents should belong to as many of them asseems reasonable, or to none.3. Archiving should be automatic. Data archiving is anarea where electronic systems fail miserably comparedto paper-based systems. Paper-based systems are �rstand foremost archiving systems, yet data archiving isdi�cult in conventional desktop systems. Often, usersthrow out old data rather than undertaking the taskof archiving it (and remembering how to get it back).If software systems make archiving and retrieval moreconvenient, old information could be reused more of-ten.4. The system should provide sophisticated logic forsummarizing or compressing (and where appropriate,for picturing or animating) a large group of relateddocuments of which the user wants a concise overview.No matter how many documents fall into a given cat-egory, the system should be capable of summarizingthe whole lot on a single screen. For some types of

www.manaraa.com

documents, pictures or animations will be good vehi-cles for summaries.5. Computers should make \reminding" convenient.Reminding is a critical function of computer-based sys-tems [13][12], yet current systems supply little or nosupport for it. Users are forced either to use loca-tion on their graphical desktops as reminding cues orto use add-on applications such as calendar managers.We have argued that the former is a mere coping strat-egy (for lack of a better method) [6], while the lattercould clearly be improved if operating systems helped.6. Personal data should be accessible anywhere andcompatibility should be automatic. Computers willeventually be used not as independent data storagedevices, but as \viewports" to data stored and main-tained on the Net. Users should be able to accesstheir personal information worlds from any availableplatform|froma Unix machine at work, a Mac or PCat home, a PDA on the road, even a set-top box viacable. Data should be accessible everywhere, regard-less of the viewing device.Some of these observations point to areas where soft-ware systems don't match the
exibility of paper-basedsystems. Others suggest areas where our software systemscan do better. We will return to these observations (goals)throughout this paper, describing how Lifestreams realizeseach of them. Our current work realizes a fair bit of goals1, 2, 4, and 5, some of 3 and 6. But all these goals arecentral to the project.III. The ModelA lifestream is a time-ordered stream of documents thatfunctions as a diary of your electronic life; every documentyou create and every document other people send you isstored in your lifestream. The tail of your stream con-tains documents from the past (starting with your elec-tronic birth certi�cate). Moving away from the tail andtoward the present, your stream contains more recent doc-uments | papers in progress or new electronic mail; otherdocuments (pictures, correspondence, bills, movies, voicemail, software) are stored in between. Moving beyond thepresent and into the future, the stream contains documentsyou will need: reminders, calendar items, to-do lists.In this section we describe Lifestreams in terms ofits basic operations: new, clone, transfer, find andsummarize. In the process we show how Lifestreams pro-vides transparent storage, organization through directorieson demand, and the ability to create overviews. We thenexamine the underlying time-based storage model and, inthe process, show how Lifestreams accomplishes archivingand reminding in a natural way.Document Creation and StorageUsers create documents by means of new and clone. Newcreates a new, empty document and adds it to your stream.

Clone takes an existing document, creates a duplicate andadds it to your stream. Documents can also be createdindirectly through transfers, which copy a document be-tween streams. Creation is always \transparent" becausedocuments, by default, are always added to the end of thestream and don't have names unless users want them to.Directories on DemandLifestreams are organized on the
y with the find oper-ation. Find prompts for a search query, such as \all email Ihaven't responded to," or \all faxes I've sent to Schwartz,"and creates a substream.Substreams, like virtual directories [10][14], present theuser with a \view" of a document collection. The view con-tains all documents that are relevant to the search query.Substreams di�er from conventional directory systems inthat, rather than placing documents into �xed, rigid direc-tory structures, they create virtual groups of documentsfrom the stream. Documents aren't actually stored inthem; a substream is a temporary collection of documentsthat already exist on the main stream. Substreams mayoverlap and can be created and destroyed on the
y with-out a�ecting the main stream or other substreams.Substreams are dynamic. If you allow one to persist, itwill collect new documents that match your search criteriaas they arrive from the outside or as you create them. Theresult is a natural way of monitoring information| thesubstream acts not only as an organizational device, but asa �lter for incoming information. For example, a substreamcreated with the query \�nd all documents created by otherpeople" would subsume your mailbox and automaticallycollect mail as it arrives.OverviewsThe last operation, summarize, takes a substream andcompresses it into an overview document. The content ofthe overview document depends on the type of documentsin the substream. For instance, if the substream containsthe daily closing prices of all the stocks and mutual funds inyour investment portfolio, the overview document may con-tain a chart displaying the historical performance of yoursecurities and your net worth. If the substream contains alist of tasks you need to complete, the overview documentmight display a prioritized \to-do" list.Chronology as a storage modelGiven that we use substreams to organize documents,why bother with the underlying time-based ordering? Forseveral reasons: time is a natural guide to experience; it isthe attribute that comes closest to a universal skeleton-keyfor stored experience (Malone, for example, suggests theutility of time-based organization in his early studies [13].)The stream adds historical context to a document collec-tion; all documents eventually become read-only (in thepast, set in stone for history), and the stream preservesthe order and method of their creation. Like a diary, astream documents work, correspondence and transactions.2

www.manaraa.com

Although historical context can be crucial in an organiza-tional setting [4], most current systems do little to trackwhen, where, and why documents are created and deleted.The three portions of the stream, past, present, and fu-ture, mirror information categorization in user studies [12],[2]. The \present" portion of the stream holds \workingdocuments;" this is also typically where new documents arecreated and where incoming documents are placed. As doc-uments age and newer documents are added, older docu-ments recede from the user's view and are \archived" in theprocess (here we mean archiving in the conceptual sense;users don't have to worry about old information clutteringtheir desktops or getting in the way; if at some future pointthey need the archived information, it can be located withfind).The \future" portion of the stream allows documents tobe created in the future. \Future creation" is a naturalmethod of posting reminders and scheduling information.The system allows users to dial to the future and deposit adocument there|say a meeting reminder. When the datearrives the reminder appears in the present.IV. The Lifestreams InterfaceOur research prototype consists of a client/server ar-chitecture that runs over the Internet. The server isthe workhorse of the Lifestreams system and handles oneor more streams|storing all stream documents and sub-streams. Each viewport is a client of the server and pro-vides the user with an interface to the document collection.We believe the \look and feel" of the viewport interface willdi�er radically over the range of computing platforms, fromset-top boxes to high-end workstations, but each viewportwill support the basic operations.We have currently implemented three client viewports:one using X Windows, one ASCII-based and one forthe Newton PDA. The X Windows viewport providesa graphical interface and implements the full range ofLifestream functionalities; the ASCII interface also imple-ments the full-range Lifestreams but with a mail-like in-terface; the Newton version implements a minimal stream-access method, given its lack of internal memory and low-bandwidth communications. In this paper we concentrateon the X windows viewport (information on the Newtonversion can be found in [7].)Our X Windows viewport is shown in �gure 1. The in-terface is based on a visual representation of the streammetaphor. Users can slide the mouse pointer over the doc-ument representations to \glance" at each document, oruse the scroll bar in the lower left-hand corner to roll them-selves back into the past.Color and animation indicate important document fea-tures. A red border means \unseen" and a bold one means\writable"; open documents are o�set to the side to indi-cate they are being edited. Incoming documents slide infrom the left side, and newly created documents pop downfrom the top and push the stream backwards by one docu-ment into the past.The user can view (or edit) a document by clicking on its

Fig. 1. The UNIX Viewport.graphical representation. We rely on external helper appli-cations to view and edit documents, which speeds the learn-ing process signi�cantly for Lifestreams users | they cancontinue to use applications they are familiar with (such asemacs, xv, and ghostview) to create and view documents,while using Lifestreams to organize them and communi-cate.The interface prominently displays the primary sys-tem operations | New, Clone, Xfer (i.e., transfer), Find,Summarize and a few useful secondary operations (such asPrint and Freeze) | as buttons and menus. The Newbutton creates a new document and adds it to the stream.The Clone button duplicates an existing document andplaces the copy on the stream. The Freeze button makesa writable document read-only. Xfer �rst prompts the userfor one or more mail addresses and then forwards a doc-ument. Print copies a selected document to a printer.2Find is supported through a text entry box that allows theuser to enter a boolean search query, which results in a newsubstream being created and displayed.Menus are used to select from streams or existing sub-streams, create summaries, initiate personal agents andchange the clock. The Streams menu allows the user to se-lect from a list of locally available streams. Figure 2 showsthe Substreams menu; the menu is divided into three sec-tions. The �rst contains a list of operations that can beperformed on substreams (such as remove). The next con-tains one menu entry labeled \Your Lifestream," and fo-cuses the display on your entire Lifestream (i.e., all of yourdocuments). The last section lists all of your substreams.Note that substreams can be created in an incrementalfashion that results in a nested set of menus. In this exam-ple the nested menus were created by �rst creating a sub-stream \lifestreams and david" from the main stream andthen creating two substreams from this substream, \sce-narios" and \ben." Substream \scott" was created from2This could easily be implemented by transferring all documentsto a printer stream, where a stream agent forwards each new docu-ment to the appropriate printer. Our implementation, however, usesconventional methods of transferring documents to the printer.3

www.manaraa.com

Fig. 2. Selecting a Substream.the \scenarios" substream. Semantically this incrementalsubstreaming amounts to a boolean and of each new querywith the previous substream's query.Figure 3 shows a list of possible summary types for thissubstream. Choosing any of these menu options creates asubstream summary, and a new document containing thesummary is placed on the stream. The Personal Agentsmenu lists a number of available agent types. (We discusspersonal agents in passing in the next section. They can beadded to the user interface in order to automate commontasks: see [8] for more information.)Fig. 3. The summarize menu item.Finally, Lifestreams always displays the time in the up-per right hand corner of the interface. This time displayalso acts as a menu (�gure 4) that allows the user to set theviewport time to the future or past via a calendar-baseddialog box (�gure 5). Imagine a cursor always pointingto the position in the stream such that all documents be-yond that point towards the head have a future timestampand all documents before it, towards the tail, have a pasttimestamp. As time progresses this cursor moves forwardtowards the head; as it slips past \future" documents theyare added to the visible part of the stream, just as if newmail had arrived.Fig. 4. Altering time in Lifestreams.The e�ect of setting the time to the future or past is toreset the time-cursor temporarily to a �xed position desig-

nated by the user. Normally the user interface displays alldocuments from the past up to the time-cursor. Setting thetime-cursor to the future allows the user to see documentsin the \future" part of the stream. Creating a documentin this mode (i.e., \in the future") results in a documentwith a future timestamp. Once the user is �nished time-tripping, he can reset to the present by selecting the \Settime to present" menu option in the time menu.
Fig. 5. Setting a time.V. Lifestreams in PracticeWe now look at examples of how Lifestreams can be usedto accommodate common computer tasks, such as commu-nication, creating reminders, managing scheduling, track-ing contacts, and managing personal �nances (to name afew). While a detailed description of how Lifestreams isused could �ll a paper in itself, we will attempt to conveya sense of how the system is used through a handful ofexamples.Sending and receiving Email; Automatic remindersUsing email in Lifestreams is not much di�erent fromwhat users are already accustomed to. To send a message,the user creates a new document (by clicking on the Newbutton) and then composes the message using a favoriteeditor. The message can then be sent with a push of theXfer button. Similarly, existing documents are easily for-warded to other users, or documents can be cloned andreplied to. While all mail messages (incoming and outgo-ing) are intermixed with other documents in the stream,the user can easily create a mailbox by substreaming ondocuments created by other users; or, users can take thisone step further and create substreams that contain a sub-set of the mailbox substream, such as \all mail from Bob,"or \all mail I haven't responded to."We have already mentioned how users can dial to the fu-ture, depositing documents that act as reminders. A usercan also send mail that will arrive in the future. If he\dials" to the future before writing a message, then whenthe message is transferred it won't appear on recipients'streams until either that time arrives or they happen todial their viewports to the set creation date. In the present,the document will be in the stream data structure but theviewport won't show it. We use this ability to send mailto the future to post reminders to others about importantmeetings, department talks, etc. By appearing \just-in-time" and not requiring the user to switch to yet another4

www.manaraa.com

application, these reminders are more e�ective than thoseincluded in a separate calendar or scheduling utility pro-gram.Tracking contacts, Making a phone callThere are a number of contact managers on the marketthat store electronic business cards, the date and time ofcontacts, and time spent on tasks for billing purposes. Ourresearch prototype currently supports an electronic busi-ness card document type as well as a \phone call record"document for noting the date and time of phone contacts.In addition we have automated much of the task of creat-ing a phone call record through a personal agent. The per-sonal agent is automatically attached to the personal agentmenu, so anytime we want to make a call we choose \MakePhonecall" from the personal agent menu. The agent isspawned and the dialog box in �gure 6 appears.
Fig. 6. The phone call agent.

Fig. 7. Phone record, automatically �lled in by the agent.The user types in the name of the callee; the agent thensearches the current stream for a business card with thatname and, if found, creates and �lls in the appropriateentries of a phone call record as seen in �gure 7 (this func-tionality is similar to the use of the personal assistant onthe Newton platform).The user can then later use the Lifestreams summarizeoperation to summarize over the phone calls. This resultsin a report as shown below:WHO ON AT ABOUT---Scott Fertig Tue Aug 1 12:05 EDT 1995 432-6433 Port to PPCWard Mullins Tue Aug 1 11:57 EDT 1995 415 224-1912 Tcl/Java discussionBeth Freeman Tue Aug 1 10:22 EDT 1995 432-1287 insuranceThis could be extended to subsume the functionality ofa time manager (and we are in the process of doing this).Time managers generally track the billable hours a profes-sional spends on one or more projects. In Lifestreams this

is easily accomplished by creating a timecard that marksthe starting and ending time of each task (these timecardsare just thrown onto the stream as they are used). Then,before each billing period, the stream is summarized by thetimecards, resulting in a detailed billing statement for eachcontract.Personal FinancesOnline commerce is quickly becoming commonplace; alarge number of users already track their checking accounts,savings, investments, and budgets with applications suchas Quicken. The types of records and documents usedin these applications | electronic checks, deposits, securi-ties transactions, reports | can be conveniently stored andgenerated by Lifestreams. We have just begun to exploreusing Lifestreams to manage personal �nances, having im-plemented a �ctional stock quote service that forwards thedaily closing prices of a �ctional portfolio to our lifestreamsat the end of every business day.3 These documents aresimple ASCII documents as shown below.Quote-O-Matic Stock Service for 5/16/95GVIL 14.00LMASX 20.84ODWA 18.50SPLS 27.12TSA 19.25lmvtx 21.41The document lists each stock and mutual fund along withits closing price, giving the user a method of calculatinghis assets on a speci�c day. But what if the user wants\higher-level" view of his portfolio over time? This is wheresummarize can be used. The user �rst selects a substreamcontaining his stock quote documents, and then he selectsthe \summarize by portfolio" menu item. This compressesthe data into a single chart of historical data having sum-marized over the portfolio documents in the substream. Wepresent the result in �gure 8.
Fig. 8. The portfolio summary.3Many similar stock quote services already exist of the Internet.5

www.manaraa.com

This is just the beginning. A user could easily migrate hischecking account to Lifestreams so that each check writtencreates a record on his stream. Some of these checks wouldbe electronic checks sent to companies with an online pres-ence; others transcribed from written checks (just as manypeople already do with Quicken). The user could then em-ploy a personal agent to help balance his checkbook. Atyear's end he runs a tax summary which squishes the �nan-cial information in his stream down to a form 1040, whichcould then be shipped electronically to the IRS.Lifestreams could help with budgeting, tracking expen-ditures, etc. Of course, many of these capabilities are al-ready available in products like Quicken; it is worth point-ing out, however, that Lifestreams contains everything aperson deals with in his electronic life (and in a convenientand searchable location).Interacting with the world: Web bookmarksAll of our previous examples made use of informationstored in Lifestreams. We have also found Lifestreams quiteuseful for managing information outside of the system. Forexample, our research group found it di�cult to keep trackof our own Web bookmarks and inconvenient to pass inter-esting bookmarks to one another. This was usually accom-plished by copying a URL from a Web browser to an emailmessage, which the recipient would copy from email backto their own browser and add as a bookmark. We wereable to solve both of these problems with Lifestreams.We developed a system similar to \warm lists" [11],whereby a daemon watches each user's bookmark �le, andeach time a new bookmark is added the same bookmarkis added to Lifestreams as a new \URL document." Thee�ect of opening a URL document in Lifestreams is thatour web browser comes to the foreground and attempts toconnect to the URL. In this way we can use Lifestreamsto create a bookmark substream while at the same timemaking the data in the bookmarks readily available to anyother searches we might make on our stream.Passing URLs around is trivial. We merely copy the URLdocument to another user's stream (a one-step process)and the URL is automatically included in his bookmarkssubstream.VI. Status and Future DirectionsLifestreams is up and running on our local computing en-vironment (a collection of SunOS, Solaris, and AIX work-stations) and supporting a few local users. We plan toexpand this number as the software matures. Our initialimplementation e�orts have focused on providing a \proofof concept" for the Lifestreams model. Based on feedbackfrom the initial users we judge the experiment to have beena success | users �nd the system valuable and don't wantto give it up. Given the nature of the system our work hasproceeded on many fronts, including user interface design,system integration, indexing and retrieval, agent technolo-gies, network access, security, and performance issues. Thegoals of our �rst system have been modest; each server tosupport three to four simultaneous users with stream sizes

on the order of 5,000 documents (perhaps a year or two ofdocuments for the average user). As of this writing, we aremaking architecture changes that should allow lifestreamsof 20,000 documents; that may well be the limit for ourcurrent architecture.We are now considering design changes that will makethe system more scalable; previous work in the informa-tion retrieval and database communities is encouraging.Lifestreams incorporates ideas from both disciplines; butfocuses on personal storage rather than centralized datacollections.Lifestreams already incorporates many current informa-tion retrieval techniques. Substreaming is e�ciently imple-mented using an inverse index of the document collection(maintained by the server). We've seen no real performanceproblems with respect to retrieval and, given the very largeindices that are being used on the Internet, we believe ourretrieval scheme should scale to large document collections.Lifestreams also has much in commonwith database sys-tems. Substreams are related to a \views" in relationaldatabases [5]. \Triggers" are related to future documentsin Lifestreams (in Lifestreams, the trigger occurs when thecreation date of the document slides into the past). Thereare also connections between Lifestreams and temporaldatabases [18], temporal logic [1], and sequence databasesystems [16] where time and/or logical sequences play acrucial role in the system.Our most immediate gain potential from database workis in e�cient handling of large document collections. Cur-rently, both the client and server keep in core the recordsof the entire document collection when a user views hiswhole Lifestream. We need to borrow database technologyfor large collections. There are HCI problems to solve heretoo. Since no user can look at 10,000 documents at onceand discern any usable information,4 it doesn't make senseto give users an entire document collection at once. A morereasonable approach would be to use \cursors" to allow theuser to view segments of the document collection, and toload in more segments as needed.Our last problem area involves multi-user access to aLifestream. Our current implementation only provides asingle-threaded server (and thus a single point of access).While we've found server performance reasonable for asmall number of users, clearly a multi-server and multi-threaded approach present a more scalable architecture.Our previous work in parallel computing has explored theseareas [3], but there is work still to be done in the integra-tion of these techniques with basic information retrievaland database functionality.VII. AcknowledgmentsThe authors wish to thank Scott Fertig, MichaelFranklin, Elisabeth Freeman, and Susanne Hupfer for theircomments and suggestions on drafts of this paper.4Although recent work by Shneiderman [17] suggests how onemight, in principle, do so. His techniques still need work, through, toscale beyond small databases of information.6

www.manaraa.com

References[1] James F. Allen. Maintaining knowledge about temporal inter-vals. Communications of the ACM, 26(11):832{843, 1983.[2] Deborah Barreau and Bonnie A. Nardi. Finding and remind-ing: File organization from the desktop. In SIGCHI Bulletin.SIGCHI, July 1995.[3] Nicholas Carriero and David Gelernter. Linda in context. Com-munications of the ACM, April 1989.[4] Terry Cook. Do you know where your data are? In TechnologyReview. MIT, January 1995.[5] C. J. Date. Database Systems. Addison-Wesley, 1986.[6] Scott Fertig, Eric Freeman, and David Gelernter. Finding andreminding reconsidered. In SIGCHI Bulletin, volume 28, Jan-uary 1996.[7] Eric Freeman. Lifestreams for the Newton. PDA Developer,3(4):42{45, July/August 1995.[8] Eric T. Freeman and Scott J. Fertig. Lifestreams: Organizingyour electronic life. In AAAI Fall Symposium: AI Applicationsin Knowledge Navigation and Retrieval, November 1995. Cam-bridge, MA.[9] David Gelernter. The cyber-road not taken. The WashingtonPost, April 1994.[10] David K. Gi�ord, Pierre Jouvelot, Mark Sheldon, and JamesO'Toole. Semantic �le systems. In 13th ACM Symposium onOperating Systems Principles, October 1991.[11] Paul Klark and Udi Manber. Developing a personal internetassistant. In ED-MEDIA '95 World conference on educationalmultimedia and hypermedia, June 1995.[12] M. Lansdale. The psychology of personal information manage-ment. Applied Ergonomics, March 1988.[13] Thomas W. Malone. How do people organize their desks? Im-plications for the design of o�ce information systems. ACMTransactions on O�ce Systems, 1(1):99{112, January 1983.[14] Udi Manber and SunWu. Glimpse: A tool to search through en-tire �le systems. Technical Report 093-34, Department of Com-puter Science, The Univesity of Arizona, October 1993.[15] Theodor Nelson. The right way to think about software design.In The Art of Human-Computer Interface Design (Ed.) BrendaLaurel, 1990.[16] Praveen Seshadr, Miron Livny, and Raghu Ramakrishnan. Se-quence query processing. In ACM SIGMOD Conference on DataManagement, 1984.[17] Ben Shneiderman. Dynamic queries for visual information seek-ing. IEEE Software, pages 70{77, November 1994.[18] Richard T. Snodgrass. Temporal databases - status and researchdirections. SIGMOD Record, 19(4):83{89, 1990.

7

